摘要
为了解决现有的人脸表情识别特征提取易受背景及个体因素影响,类内差距大,类间相似度高及实时性较差等问题,提出了一种高效通道注意力网络的轻量级表情识别方法。基于深度可分离卷积改进线性瓶颈结构减少网络复杂性和防止过拟合;通过设计高效注意力模块将特征图的深度与空间信息结合,更着重于重要特征提取,并采用联合损失函数减少相同表情的类内特征差异,扩大不同表情类间特征间距,使网络具有更好的特征判别效果。所提方法在FER—2013与CK+数据集的识别率达到73.3%与97.9%,对比当前诸多较新的方法具有更好的识别性能。
- 单位