结合SKNet与U-Net的盐体识别方法

作者:程国建; 刘宁; 万晓龙; 姚卫华; 魏新善
来源:油气地质与采收率, 2022, 29(01): 62-68.
DOI:10.13673/j.cnki.cn37-1359/te.2022.01.008

摘要

地下盐体与油气藏的关系密不可分,盐体的准确识别对油气藏勘探和钻探路径规划具有重要意义。以往的深度学习方法使用固定大小的感受野,不能根据地震图像中盐体的大小动态地调整卷积核来捕捉特征,从而忽略了部分全局信息,导致在盐体边界或狭长处识别效果较差。针对上述问题,在U-Net基础上进行改进,使用SKNet作为编码器提取盐体特征,其具有动态选择机制,根据输入信息的多个尺度自适应地调整感受野的大小,并结合位置与通道自注意力机制以及超柱体方法进行特征融合。采用改进的U-Net方法对TGS盐体数据集进行评估,取得交并比为85.66%、像素准确率为96.1%的识别效果。