摘要

糖尿病视网膜病变(Diabetic Retinopathy, DR)的早期病变主要包括为微动脉瘤、出血点和硬性渗出物。但在临床中仅依靠医生进行人工标注,耗时费力。传统方法在检测DR早期病变中存在着特征提取困难、分类性能差等问题。因此,提出一种反卷积神经网络模型实现对上述三类病变的自动检测,其中反卷积层代替池化层可恢复在卷积运算中丢失的有用信息。实验结果表明,该方法可准确检测公共眼底图像数据库中的三类病变,灵敏度分别为91.7%、97.0%和99.4%。