针对过程神经网络时空聚合运算机制复杂、学习周期长的问题,提出了一种基于数据并行的过程神经网络训练算法。该方法基于梯度下降的批处理训练方式,应用MPI并行模式进行算法设计,在局域网内实现多台计算机的机群并行计算。文中给出了基于数据并行的过程神经网络训练算法和实现机制,对不同规模的训练函数样本集和进程数进行了对比实验,并对加速比、并行效率等算法性质进行了分析。实验结果表明,根据网络和样本规模适当选取并行粒度,算法可较大提高过程神经网络的训练效率。