摘要
通过气相色谱法分析花生油和棕榈油的混合油的脂肪酸组成,建立了人工神经网络分析二组分食用油混合模型的方法。分别基于混合油样品中棕榈酸和亚油酸含量变化的一元线性回归模型和基于全部脂肪酸组成的BP神经网络建立定量模型对花生油中棕榈油的掺杂量进行预报。结果表明,BP神经网络的预报准确率为96.7%,当棕榈油掺杂量≥0.050(V/V)时,相对偏差≤6%,其准确度高,能够实现二组分混合油掺混量的准确预报,为调和油的组成分析提供了新思路。
- 单位
通过气相色谱法分析花生油和棕榈油的混合油的脂肪酸组成,建立了人工神经网络分析二组分食用油混合模型的方法。分别基于混合油样品中棕榈酸和亚油酸含量变化的一元线性回归模型和基于全部脂肪酸组成的BP神经网络建立定量模型对花生油中棕榈油的掺杂量进行预报。结果表明,BP神经网络的预报准确率为96.7%,当棕榈油掺杂量≥0.050(V/V)时,相对偏差≤6%,其准确度高,能够实现二组分混合油掺混量的准确预报,为调和油的组成分析提供了新思路。