多粒度粗糙集和决策论粗糙集是Pawlak粗糙集的重要推广,目前已成为人工智能研究的热点.然而,它们大多处理的都是单值信息系统中的问题.而实际生活中绝大多数都是处理多值问题,为了解决这一问题,在多集值信息表中将多粒粗糙集与模糊决策论粗糙集相结合进行研究,提出了其在乐观,悲观情形下的上下近似,研究了一些相关性质并给出了多集值信息表中的多粒度模糊决策论粗糙集精度、粗度的概念,最后通过一个具体例子验证其有效性.