基于CFSFDP图拉普拉斯算法的非侵入式负荷监测方法

作者:林平川; 路磊; 谷超; 冯俊国; 张仕文; 杨顺尧; 于丹; 郑迪文*; 汪颖
来源:工程科学与技术, 2023, 55(04): 216-223.
DOI:10.15961/j.jsuese.202200034

摘要

非侵入式负荷监测(NILM)是中国未来电网建设的重要发展方向之一。为克服传统非侵入式负荷监测方法的计算数据量大、辨识准确率较低等问题,提出了一种基于快速密度峰值搜索算法(CFSFDP)图拉普拉斯算法的非侵入式负荷监测方法。首先,该方法利用输入的设备有功功率数据采取快速密度峰值搜索聚类算法构建家用电器的功率阈值向量和先验图结构;然后,结合图信号的平滑度特征和总功率信号构建图拉普拉斯二次型最优函数,利用Tikhonov正则化方法以迭代的方式求得最优解,从而实现用电负荷图信号的重构;最后,根据功率阈值向量将图信号转换为功率信号,即可实现用户的非侵入式负荷监测。对某一家庭2 d的实测用电数据进行仿真分析,包括2 d内的负荷监测结果和采样频率对算法性能的影响,结果如下:1)该方法能够识别出第1天内工作的所有设备,各用电设备消耗用电量比例与实际耗电量比例接近。2)该方法对第2天的负荷识别准确率达到了90.1%,优于4种对比算法。单个用电设备的分解精度达到91%以上,绝大多数设备的用电量误差都低于对比算法。3)当数据采样间隔增大为2 min,所提算法的准确率、辨识精度和单设备分解精度都有所降低,但数值上优于对比算法,并且有更优的时间复杂度。研究结果验证了所提非侵入式负荷监测方法的有效性及其优越性,对于解决实际低频NILM问题有很大的优势。

全文