摘要
在恶劣的油藏条件下,化学驱提高采收率方法的可行性主要在实验室进行,以探究化学驱方案在现场实施的可能效果,但此类实验通常昂贵且费时。为了提高筛选效率和研究变量关系,进行了3个聚合物驱油实验项目,其次通过构建14种机器学习基础模型来预测低渗透砂岩聚合物驱油实验的效率。结果表明:多层感知机(multi-layer perception, MLP)、随机树(random forest, RF)和极限梯度上升(extreme gradient boosting, XGB)模型表现最佳,它们在测试集的确定系数均为0.99,均方根误差分别为0.855、0.836和0.859。模型表明特征重要性由强至弱依次为含水率、累积注入孔隙体积、渗透率、非均质系数、孔隙度、聚合物注入量、聚合物浓度、注入压力。研究成果为室内物理低渗透砂岩聚合物驱提供了可靠的数据,给出了14种机器学习模型预测性能直接对比,建立了高拟合高泛化高稳定低误差的低渗透砂岩聚合物驱预测模型,有助于化学驱方案快速在低渗透储层应用,以及降低失败风险。
- 单位