摘要
针对特高压换流站全景监视系统运行环境导致的视频图像抖动、镜头出现积灰等问题,以及基于深度学习的高分辨率图像重建算法存在细节特征失真和计算复杂度较高的缺陷,提出一种基于多尺度卷积块和残差网络的图像超分辨率重建方法,通过增加具有较小内核的深度卷积层来获取图像的鲁棒细节特征,并在训练过程中加入残差网络,加快网络收敛速度,解决消失梯度,改善图像重建质量。对部分标准数据集和特高压换流站全景监视图像数据集进行了图像超分辨率重建和目标识别实验研究,与超分辨率卷积神经网络(super-resolution convolutional neural network, SRCNN)和快速超分辨率卷积神经网络(fast SRCNN, FSRCNN)方法相比,所提算法的结构相似指数均值分别增加了0.004 3和0.0298,峰值信噪比分别提高了0.17 db和0.83 dB。实验结果表明所提方法重建了细节信息更逼真的高分辨率图像,可以满足换流站全景监视的需求。
-
单位国网安徽省电力有限公司; 合肥工业大学