摘要

提出基于深层声学特征的端到端单声道语音分离算法,传统声学特征提取方法需要经过傅里叶变换、离散余弦变换等操作,会造成语音能量损失以及长时间延迟.为了改善这些问题,提出了以语音信号的原始波形作为深度神经网络的输入,通过网络模型来学习语音信号的更深层次的声学特征,实现端到端的语音分离.客观评价实验说明,本文提出的分离算法不仅有效地提升了语音分离的性能,也减少了语音分离算法的时间延迟.