摘要
缺陷分类在带钢生产中扮演着重要的角色。但由于工业数据集的长尾分布和带钢缺陷的复杂性,现有的带钢表面缺陷检测方法仍然有待改进。文中提出了一种基于多方位感知的长尾分类方法(MDPLC,multi-directional perception of long-tail classification)去解决带钢表面缺陷的长尾分类问题。首先,通过全局和局部图像的多输入来实现模型的多方位感知策略。其次,采用共享层与个性化层结合的三联体网络架构来分别提取多输入的特征,在有效减少计算参数的同时保证特征的多样性。最后,将部分浅层网络的特征与深层特征融合,增加模型对多尺度缺陷的感知能力。实验结果表明:MDPLC在X-SDD热扎带钢表面缺陷数据集上的平均精度达到了97.71%,优于其他对比模型,验证了该方法的有效性和鲁棒性。
-
单位湖北工业大学; 电子工程学院