针对多智能体系统目标围捕问题,提出了基于强化学习的目标围捕控制方法。首先,对多智能体系统进行马尔可夫博弈建模,设计能够控制系统到期望围捕状态并满足避障要求的势能函数,将模型控制与强化学习原理结合,利用势能模型引导的改进多智能体强化学习算法进行围捕。其次,在已有势能模型的基础上建立跟踪围捕和环航围捕2种围捕策略。前者通过设计速度势能函数实现多智能体一致跟踪。后者加入虚拟环航点,设计虚拟环航点势能函数实现期望环航。最终,仿真验证了多智能体强化学习围捕控制策略的有效性。