摘要
针对目前协同过滤推荐算法推荐精度和用户数据在算法中匹配度都不高的问题,提出一种多属性的条件受限波尔兹曼机协同过滤推荐模型(MA-CRBM)。该模型基于实值状态的条件玻尔兹曼机,融合了用户职业和性别属性,充分利用数据集中潜在的评分与未评分信息。在训练过程中,采用动态迭代采样算法对原采样算法进行了改进,克服了训练后期数据采样误差波动太大导致精确度不高的问题。在MovieLens数据集上的实验结果表明,MA-CRBM模型具有较好的推荐效果,可以有效提升推荐模型的精度和效率。
-
单位电子工程学院; 陕西国防工业职业技术学院; 西安工程大学