摘要

公交站点客流预测是公交调度的主要依据。针对传统的公交短时客流预测只考虑时间特征这一弊端,提出基于卷积神经网络(CNN)和门控循环单元(GRU)的预测模型,分别利用CNN和GRU对公交客流的空间和时间特征进行提取,构建公交站点短时客流预测模型。利用苏州市公交IC卡刷卡数据和公交车GPS数据,构建站点客流时空矩阵,使用模型对公交站点的客流进行预测。实验结果表明,CNN+GRU预测模型能够有效地进行公交短时客流预测,并且比其他模型具有更好的准确性。

全文