摘要
为准确量化复杂场景下光伏预测功率的不确定性,本文提出了一种基于时序卷积网络-注意力机制-长短期记忆网络组合的光伏功率短期概率预测方法。首先,基于多种相关性分析方法选出与光伏功率强相关的气象因素;然后,基于时序卷积网络的特征提取能力和长短期记忆网络的时序特征建模能力,并结合注意力机制和分位数回归,建立组合深度学习预测模型;最后,采用核密度估计方法生成连续概率密度函数。以实际集中式和分布式光伏电站为案例进行分析,结果表明:与长短期记忆网络、时序卷积网络、时序卷积网络-注意力机制和时序卷积网络-长短期记忆网络相比,本文方法在确保最优的预测区间的同时,也可以提升概率密度预测的性能。
- 单位