摘要

针对二自由度机械臂非线性系统,迭代学习控制(iterative learning control,ILC)对于具有重复运动特性的机械臂有较好的控制效果。在扰动的情况下,设计了一种PD型迭代学习控制律,随着系统迭代次数的不断增加,通过在区间内对增益矩阵进行实时修改来缩短所需的修正区间,进而达到加快收敛速度的目的。首先,结合λ范数分析ILC的收敛性。其次,通过仿真验证所提出控制策略的可行性和有效性。最后,在相同条件下,仿真结果表明,PD型ILC收敛速度比P型ILC更快;带有扰动的PD型ILC比传统扰动型PD控制收敛效果更好。