摘要
齿轮退化状态的准确评估对于设备安全运行具有重要意义。常规的齿轮退化状态评估方法的效果受特征提取、预处理等因素的影响。基于生成模型的状态评估方法利用原始观测进行评估,能够降低人为因素的影响。但传统生成模型如变分自编码器(VAE)存在边缘估计不准确的缺点。本文提出了多元可逆深度概率学习(MIDPL),通过叠加可以被优化的可逆变换实现从既定初始分布到未知观测分布的转换,将分布特性复杂的多观测序列转换至既定初始分布进行边缘概率计算继而实现状态评估。本文通过齿轮退化实验验证了MIDPL的有效性,与VAE相比,MIDPL在点蚀和断齿数据集下的评估误差分别降低了30.92%和69.25%,MIDPL能够实现更为稳定和准确的齿轮退化过程评估。
-
单位机械传动国家重点实验室; 重庆大学; 重庆电子工程职业学院