摘要
针对受莱斯衰落影响的4QAM、16QAM、32QAM、64QAM、128QAM、256QAM六类信号,分别研究了卷积神经网络(CNN)模型以及特征参数结合深度神经网络(DNN)分类器模型的调制方式识别性能。CNN模型需要大量带标签的数据集以及很长的训练时间才能获得较好的识别性能,而特征参数结合深度神经网络分类器模型所需训练时间较短,但其分类性能受限于特征参数的设计。针对以上问题,研究了混合高阶矩作为特征参数集,再将DNN作为分类器对多进制正交幅度调制(MQAM)信号进行识别的方法。仿真结果表明,该方法在低信噪比情况下对受莱斯衰落影响的MQAM信号识别准确率高于CNN模型,且分类准确率上限明显高于采用高阶累积量作为特征参数的方法。
-
单位中国人民解放军陆军工程大学