摘要

针对传统U-Net对于目标小、分辨率低和背景复杂的遥感图像的飞机检测率低问题,提出一种轻量级多尺度注意力U-Net模型(LWMSAU-Net)。该模型由相互对应的编码子网络和解码子网络组成,编码子网络采用多尺度模块,在编码和对应的解码模块之间使用残差跳跃连接模块,将图像的浅层特征与深层特征融合,通过增加浅层特征的权重,更多地保留飞机图像的边缘和细微结构特征,最后的编码模块采用残差注意力连接模块,连接编码子网络和解码子网络,加强对小尺度飞机目标的检测。解码路径在每个模块反褶积将特征图的大小乘以2,使特征图的数量减半,并与对称编码路径的特征图相结合。与U-Net相比,LWMSAU-Net的层数减少1,在遥感飞机图像数据集上进行实验,结果表明该方法能够有效检测遥感图像飞机,准确率可达94.72%。