摘要

针对关节臂式坐标测量机(AACMM)长度误差补偿问题,分析了误差来源,通过实验确定了影响其测量长度的误差参数。引入BP神经网络对长度误差补偿模型进行了建模,并通过粒子群化算法对BP神经网络的权值和阈值进行全局寻优,克服了BP神经网络收敛速度慢和易陷入局部极值的缺陷。在不同输入参数的条件下测量标准尺,获得了误差补偿模型的训练样本。进行了长度误差补偿验证,补偿后误差均值减小了0.014 mm,使AACMM的测量精度提高了31.8%。