摘要

边界框回归是文字检测中关键的步骤,为了更好地预测边界框和收敛网络参数,在Faster RCNN目标检测算法的基础上提出一种利用旋转交并比损失函数的神经网络。该损失函数根据文字检测的评价指标而设计,增加预测框的角度参数,将其与宽和高的参数一起代入损失函数的惩罚项,代替了原版用于边界框回归的smooth L1损失函数,转化为交并比的损失向神经网络进行反向传播,并着重优化边界框的方向信息,通过设计与角度惩罚项相同的阈值运算作为非极大值抑制来输出检测结果。在公开文字检测数据集ICDAR2015上的实验结果表明,该方法有效提高了网络的收敛速度和检测精准度,比原方法综合提升11百分点左右。