摘要
随着深度学习神经网络的发展,FPGA上的神经网络开发获得了广泛关注.本文利用Intel FPGA提供的OpenCL SDK,在FPGA板卡上设计并实现了完整的全连接神经网络的前向模型,并针对基准系统中的存储瓶颈,通过分组划分、数据复用、优化激活函数、单指令多数据流、浮点数半精化等策略进行优化,平衡了系统中的资源占用情况,扩大了电路规模,提升了系统性能;优化后的版本与基准版本相比,得到了2. 19x的加速.优化后,系统的主频达到380MHz,RAM占用率达到94%,DSP占用率达到42%.
- 单位