摘要
逆合成孔径雷达(ISAR)成像技术能够对空间目标进行远距离成像,刻画目标的外形、结构和尺寸等信息。ISAR图像语义分割能够获取目标的感兴趣区域,是ISAR图像解译的重要技术支撑,具有非常重要的研究价值。由于ISAR图像表征性较差,图像中散射点的不连续和强散射点存在的旁瓣效应使得人工精准标注十分困难,基于交叉熵损失的传统深度学习语义分割方法在语义标注不精准情况下无法保证分割性能的稳健。针对这一问题,提出了一种基于生成对抗网络(GAN)的ISAR图像语义分割方法,采用对抗学习思想学习ISAR图像分布到其语义分割图像分布的映射关系,同时通过构建分割图像的局部信息和全局信息来保证语义分割的精度。基于仿真卫星目标ISAR图像数据集的实验结果证明,本文方法能够取得较好的语义分割结果,且在语义标注不够精准的情况下模型更稳健。
- 单位