摘要

针对人工进行轮毂分拣存在的误识别问题,采用一种基于ResNet50与迁移学习的神经网络模型来识别汽车轮毂。把预训练模型参数迁移到ResNet50卷积神经网络中,修改原网络的输出层,构建基于ResNet50的迁移学习模型,通过进一步训练轮毂数据集来微调模型参数,提取轮毂的细粒度特征。通过对比AlexNet、VGG11、VGG16与ResNet50模型在未使用微调、使用微调和冻结不同数量卷积层参数时的训练效率、准确率,证明ResNet50迁移学模型在冻结前7个Bottleneck残差块参数时不仅能缩短训练时间,并能在相同迭代周期下取得更高的准确率。在该冻结策略下训练生成TL-ResNet50迁移学习模型,分别对8种轮毂进行预测,得出每种轮毂的平均准确率达到99%以上。