摘要

针对海量或高维数据进行异常检测实验时,往往检测速度较慢、效率较低。针对此问题,设计了一种基于Spark分布式计算的扩展孤立森林异常检测算法改造实验。实验基于Spark框架,分别在数据抽样、训练、预测等阶段设计并行化改造方法,通过与单核条件下的算法对比,验证了并行化方法在保证准确性的前提下执行效率得到大大提高。此实验对加深学生对大数据分布式并行处理知识的理解,引导其对海量数据挖掘相关技术的学习兴趣具有积极作用。

全文