摘要

由于类似舰船的陆地目标的干扰和舰船的紧密排列,基于合成孔径雷达(SAR)图像的近岸舰船检测会出现较多漏检和误检,提出了一种基于YOLOv5网络的近岸舰船的检测方法。为提高近岸背景下的检测精度,使用了注意力机制模型和CSL的技术用于改进网络;分析了YOLOv5网络、注意力模型和CSL算法,基于YOLOv5进行了检测实验,引入注意力模型来改进网络;结合CSL算法,重构了YOLOv5旋转检测网络。通过调整训练参数和改进注意力,近岸目标检测网络的测试结果达到mAP 80%以上,证实了CSL+YOLOv5算法实现旋转检测的可行性。

全文