摘要

耕地土壤有机碳(SOC)是土壤质量的重要指标,也是生态系统健康的重要表征。当前机器学习(Machine Learning, ML)用于SOC数字制图日益热门,但不同算法在高空间分辨率SOC数字制图中的对比研究尚有欠缺。本研究以福建省东北部复杂地形地貌区为例,采用10m空间分辨率Sentinel-2影像数据,选取地形、气候、遥感植被变量为驱动因子,重点分析当前常用的机器学习算法——支持向量机(SupportVector Machine,SVM)、随机森林(RandomForest,RF)在SOC预测中的差异,并与传统普通克里格模型(Ordinary Kriging, OK)进行比较。结果表明:基于地形、遥感植被因子和气候因子构建的RF模型表现最佳(RMSE=2.004,r=0.897),其精度优于OK模型(RMSE=4.571, r=0.623),而SVM模型预测精度相对最低(RMSE=5.190, r=0.431);3种模型预测SOC空间分布趋势总体相似,表现为西高东低、北高南低,其中RF模型呈现的空间分异信息更加精细;最优模型反演得到耕地土壤有机碳平均含量为15.33 g·kg-1; RF模型和SVM模型变量重要性程度表明:高程和降水是影响复杂地貌区SOC空间分布的重要变量,而遥感植被因子重要性程度低于高程。

全文