摘要
针对高维网络入侵受到层次限制,入侵识别易出现局部极值化,导致入侵匹配时间延长的问题,提出并设计基于集成降噪自编码的网络入侵多模式匹配算法。引入降噪自编码网络,将深度学习法运用于在网络入侵检测中,构建深层网络模型,根据逐层贪婪编码模式实现预训练,完成高维深层网络入侵特征的自适应性提取及挖掘,通过监督式微调解决机器学习中局部极值问题,增强网络入侵检测效果与泛化性能,实现网络入侵初步检测。利用多模式匹配实现初步识别结果的最终匹配,完成网络入侵模式诊断。搭建实验平台对所提算法进行验证,将网络中用户行为日志数据当作实验数据样本,实验结果表明,负载均衡方差保持在0.85~1.0,匹配时间最短,访问文本串中字符的数目增长幅度很小,证明了算法鲁棒性和可实践性很强。
-
单位上海海洋大学; 上海杉达学院