摘要
为解决传统非参数众数回归模型没有考虑解释变量间复杂交互影响的局限,文章将众数回归与机器学习方法相结合,提出了一个新的非参数众数回归模型:众数回归森林模型。该模型一方面充分考虑了各个解释变量之间的交互影响;另一方面采用Bagging技术汇总多个众数回归树的结果,提高了预测性能。数值模拟结果表明:第一,与线性众数回归模型和众数回归树模型相比,众数回归森林模型极大地提高了估计和预测精度;第二,当数据为偏态分布时,众数回归森林模型的估计和预测精度显著优于中位数回归森林和均值回归森林模型。此外,将众数回归森林模型应用于收入分配研究中,得到了与中位数回归森林和均值回归森林模型不同的结果。
- 单位