摘要
从观察数据中发现因果关系在近年来得到了越来越多学者的关注,其中外生变量在理解因果机制中扮演者重要的角色。然而,现有的因果发现方法大多假设观察变量就是真实发生的因(果)变量,忽略了测量误差带来的影响。为此,提出了一种解决测量模型下的外生变量估计方法。通过引入triad约束,根据此约束来找出与其余所有相关成对变量都满足triad约束的变量,即外生变量。该算法不仅能够解决含有测量误差数据的估计问题,而且对于没有测量误差的数据仍然适用。实验将该算法应用于真实网络产生的数据中,结果表明,无论变量是否含有测量误差,提出方法均优于现有的其他算法。同时,基于移动基站的真实数据实验也验证了算法的有效性。
- 单位