摘要

为了提升采摘机器人对果实的识别准确率以及定位定精度,提出一种基于深度学习Faster-RCNN框架的采摘机器人目标识别和定位算法。首先采用卷积神经网络VGG16模型提取输入图像的特性信息,并利用区域提议网络RPN生成含有目标的候选框,通过引入自适应候选框数的方法有效提升了算法性能,然后利用多任务损失函数对目标进行分类识别和预测框校正定位,从而得到目标在图像坐标系统的高精准度坐标,最后通过标定求解出采摘机器人手眼两个坐标系之间的映射关系,从而实现了对果实的精确识别和定位。通过对苹果的识别和定位实验结果表明,所提算法具有较高的识别度,平均精度达97.5%,且定位误差更低,最大误差仅为1.33 cm,可为智慧农业发展提供有力的技术支持。