摘要

互联网大数据环境下,谣言事件的散播已成为以微博为代表的在线社交网络持续健康稳定发展的主要障碍之一,因此及时有效地进行谣言事件自动检测对营造清朗的网络环境和维护社会和谐发展有着现实意义。该文以微博事件为背景,综合谣言事件特征随时间变化特性以及时间维度上谣言事件的分布特点,引入论域划分思想,基于模糊聚类算法提出了随时间动态变化的事件时序特征构建模型;同时,基于社会学中谣言的传播原理,提出将事件流行度、模糊度和流传度作为微博谣言事件检测分类器的三项新特征。实验结果表明,该文提出的动态时序特征表示方法和三项新特征使谣言事件自动检测效果得到了可观提升。