摘要

针对交通状况的复杂性和边缘情况的不确定性,很难设计一个通用的自动驾驶车辆运动规划系统,采用深度学习的方法,提出了一个时空LSTM(长短期记忆网络)的运动规划模型,它能够根据提取的时空信息产生实时处理。该模型有三个主要结构,依次完成,基于Conv-LSTM(卷积长短期记忆网络)提取连续图像数据的隐藏特征。然后,基于3D-CNN(3D卷积神经网络)提取多帧特征信息中的时空信息以及FCNN(全连接神经网络)构建车辆自动转向角的控制模型。最后,对提出的LSTM时空网络模型方法和经典方法在数据集上进行性能评估。实验结果表明,该方法能够为自动驾驶车辆生成实时鲁棒准确的视觉运动规划,可以达到99%的准确率。