摘要

传统图像分类算法没有考虑当前图像数据的海量、大规模特点,使得图像分类效率、分类准确率低,为了解决当前图像分类算法存在的难题,设计基于云平台的海量图像分类算法。首先提取反映图像内容的分类特征,并对图像类型采用专家进行标记,构建图像分类的训练样本,然后针对当前图像分类错误率高的问题,设计基于最小二乘向量机的图像分类器,最后利用云平台的分布式、并行处理的优点实现海量图像分类,并采用图像分类仿真实验分析所提算法的性能,该方法降低了海量图像分类的计算复杂度,减少了海量图像分类的时间,提升了海量图像分类效率,而且海量图像分类综合效果要显著优于传统图像分类算法,验证了所提算法的海量图像分类优越性。

  • 单位
    郑州工程技术学院

全文