摘要

针对人体动作识别问题,提出一种基于同步压缩短时傅里叶变换的人体动作识别方法。使用毫米波雷达进行人体动作数据的采集,将采集到的数据进行同步压缩短时傅里叶变换得到其时频图;然后使用卷积神经网络对不同动作进行微多普勒特征提取并分类。在数据采集部分,使用毫米波雷达进行数据采集,有效地避免了外界因素的影响;在时频分析部分,使用窗函数优化的同步压缩短时傅里叶变换提高了时频聚集性。实验结果表明,该人体动作识别系统对不同人体动作的识别率可达到91.7%。

全文