摘要

大数据时代的到来,使得信息量暴增的同时,数据维度也呈现几何式增长。在保护用户隐私的前提下,如何充分挖掘高维数据的可用信息,成为了大数据发布领域的研究热点和难点。差分隐私作为一种强大的隐私保护模型,被越来越多地应用到高维数据发布中。本文归纳了差分隐私及其相关方法在高维数据发布的应用,重点分析了差分隐私和特征降维、特征抽取、贝叶斯网络、树模型以及最新提出的粗糙集和随机投影等方法在高维数据发布中结合应用的优缺点,梳理了各个方法在高维数据方面的应用和对比,最后对未来差分隐私在高维数据发布中的应用方向进行了展望。

  • 单位
    辽宁工业大学