摘要

在化工生产过程中,由于物料的危险性和流程的复杂性,导致恶性事故频发。为了保证化工过程的安全平稳运行,需对其风险演化机制进行深入解析,以抑制次衍生灾害事故的传播、扩散及演变。然而,传统方法过于依赖专家经验或先验信息,风险评估结果不精准;以复杂网络为基础的社团结构虽可视为风险演化路径的高度抽象,但已有算法难以兼顾划分结果的合理性和准确率。为此,提出一种基于DSAE-Louvain社团结构的化工过程风险演化路径深度挖掘方法。首先对多源过程数据进行处理,构建风险演化网络模型,同时利用Dijkstra算法、跳数法等手段,获取相似度矩阵;进而引入深度稀疏自编码器(DSAE)与Louvain算法,经稀疏处理开展社团结构划分;最后,根据节点重要度排序追踪整个化工过程的风险薄弱节点和关键演化路径。以Tennessee Eastman (TE)过程为例,对比GN算法、Louvain算法和DSAE-GN方法,结果表明DSAE-Louvain方法能够提升社团结构划分的精细化、高效化程度,且所挖掘的风险演化路径更为符合实际生产工艺流程。