摘要
针对羊体图像复杂背景、不均匀光照且含有大量噪声等特点,提出一种融合多尺度分水岭的改进Graph Cut分割模型.引入多尺度分水岭对图像进行预分割,将基于像素级的Graph Cut算法转化为基于区域的算法以提高分割的效率.通过标记前景和背景种子点,利用模糊C均值算法实现前景和背景区域聚类.将多尺度分水岭分割的区域作为图割的顶点,以Lazy Snapping为框架计算图的边界项和数据项,并构造能量函数,通过最大流/最小割算法求解能量函数的最小值,从而实现图像分割.通过使用不同的分割算法进行实验比较,结果表明改进的算法在准确性和高效性方面都具有很好的性能.