摘要
针对传统深度强化学习在求解无人机自主避障与目标追踪任务时所存在的训练效率低、环境适应性差的问题,在深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法中融入与模型无关的元学习(Model-Agnostic Meta-Learning,MAML),设计一种内外部元参数更新规则,提出了元深度确定性策略梯度(Meta-Deep Deterministic Policy Gradient,Meta-DDPG)算法,以提升模型的收敛速度和泛化能力.此外,在模型预训练部分构造基本元任务集以提升实际工程中的预训练效率.最后,在多种测试环境下对所提算法进行了仿真验证,结果表明基本元任务集的引入可使模型预训练效果更优,Meta-DDPG算法相比DDPG算法在收敛特性和环境适应性方面更有优势,并且元学习方法和基本元任务集对确定性策略强化学习具有通用性.
- 单位