摘要
随着人民生活水平的提高和红酒文化的发展,建立一个高效的自动化酒标图像检索系统变得越来越重要。然而,实际的酒标图像数据集普遍存在着类别样本量的不均衡、许多类样本量偏少的现象,使得基于深度学习的酒标图像检索模型难以进行有效的训练和参数学习。因此,对酒标图像进行数据增强操作就变得更为必要和迫切。为了解决这个问题,本文提出了一个专门针对于酒标图像数据进行变换和扩展的数据增强算法。它将酒标以立体的形式展示在圆柱体酒瓶的表面并通过一个拍摄视点投影到柱面切平面而形成了酒标图像。这样便可通过一幅图像对酒标进行柱面建模,并通过对视点的上下,左右,远近移动来对柱面酒标进行投影变换而生成新的酒标图像。通过在大规模的酒标图像数据集上的实验结果表明,本文所提出的基于视点变换的数据增强策略能够有效地实现对酒标图像数据的扩展,并且显著提高了酒标图像检索模型的检索能力。
- 单位