摘要
提取颈部肌肉的肌音(Mechanomyography,MMG)信号时域、时-频域和非线性动力学的15个常见特征,按照其性质分为5个特征集,并选择其中一部分构建高维特征矢量后进行主成分分析(Principal component analysis,PCA)降维处理,应用于头部动作的模式识别研究中。分别采用支持向量机(Support vector machine,SVM)、K近邻(K-nearest neighbor,KNN)和线性判别分析(Linear discriminant analysis,LDA)3种分类器,对6种头部动作(低头、抬头、左摆头、右摆头、左转头和右转头)的MMG信号进行分类。实验结果表明,选用时域、时-频域和非线性动力学特征组合的方式,以及使用SVM作为分类器,可使各类动作的分类精度均达到80%以上,从而获得相对较高的准确率。
- 单位