摘要
针对滚动轴承故障诊断的特征分辨性较低、准确度不高等问题,提出了一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和正余弦算法(SCA)优化多核相关向量机(MRVM)的滚动轴承故障诊断方法。首先采用CEEMDAN方法分解原始振动信号,提取本征模态分量(IMF)的能量占信号总能量的比例和能量熵作为故障特征;然后引入混合核函数,采用SCA算法优化权重参数和核参数,构建MRVM模型实现对滚动轴承的故障诊断。试验结果表明,SCA-MRVM模型具有较高的识别率,能有效提高故障诊断精度。
- 单位