摘要

冷连轧过程控制的轧制力模型对于提高轧制精度和降低生产成本具有重要的意义,而传统的轧制力模型结构简单,精度较低,即使在实际生产中采用自适应技术,也无法满足高精度轧制的需要。为此针对5机架冷连轧机,提出并联结构的BP神经网络模型;采用Levenberg-Marquardt算法进行训练,确定网络的结构和参数;在数据库中建立钢种与神经网络的结构和参数一一对应的关系表,保存网络训练结果。对神经网络模型的仿真测试表明该神经网络轧制力模型有较强的泛化能力,收敛速度快,不易陷入局部最优,精度明显高于传统的轧制力模型。

  • 单位
    西安交通大学机械制造系统工程国家重点实验室; 东北大学

全文