基于通道非降维注意力机制与改进YOLOv5的养殖鱼群检测

作者:韦思学; 于红*; 张鹏; 李海清; 高浩天; 张鑫; 胡泽元; 吴俊峰; 孟娟
来源:渔业现代化, 2023, 50(03): 72-78.
DOI:10.3969/j.issn.1007-9580.2023.03.009

摘要

养殖环境中模糊、气泡遮挡等现象影响养殖鱼特征提取,使养殖鱼群检测精度不佳,为解决上述问题,提出融合通道非降维双重注意力机制ECBAM与改进YOLOv5的养殖鱼群检测模型ESB-YOLO(ECBAM-SPPF-BiFPN-YOLO)。使用ECBAM注意力机制获取更多细节特征;为缓解加入ECBAM导致的检测时间增加、速度变慢,使用SPPF替换SPP,减少模型计算量,降低模型检测时间,提高检测速度;为提高YOLOv5特征融合效果,使用BiFPN进行特征权重融合,提高有效特征在特征融合的比重,减少特征丢失。为了验证改进模块对YOLOv5的影响,设计了消融试验。试验结果显示:ESB-YOLO相比YOLOv5在保持检测速度的条件下平均精度提升了2.40%;设计模型对比试验,验证了ESB-YOLO的优越性,相比FERNet、SWIPENet及SK-YOLOv5等先进水下目标检测模型,ESB-YOLO在平均精度上分别具有3.10%、3.90%与0.70%的优势。研究表明,本研究所提的模型对养殖鱼群目标检测效果更佳,可以满足养殖鱼群检测要求。