摘要

为了研究基因之间的复杂调控关系,使用贝叶斯网络模型来构建基因调控网络,针对以往单一贝叶斯网络模型结构学习算法精度低的问题,提出一种结合信息论构建初始网络并在该网络上进行评分搜索的基因调控网络学习方法,使用最大信息系数筛选有较高关联性的节点构建初始网络以提高解的质量,在评分搜索中使用禁忌搜索和BDe评分训练生成最终网络。之后在一组单细胞的蛋白质因果表达网络数据和大肠杆菌表达网络数据上进行构建基因调控网络实验,并在不同数据量,不同性能指标上与其他网络构建算法进行对比。实验结果表明,构建方法在不同规模的数据集上的有效性和准确率优于用于对比的其他算法。