摘要

针对背景感知算法未与目标的时空域特性建立联系,以及无法准确处理遮挡、形变等异常跟踪情况的问题,提出了能够动态感知时空异常的目标跟踪算法。首先,在相关滤波器训练过程中引入动态空间正则项,使其与样本的时空域特性建立联系;然后,结合响应图的峰值唯一性和锐利信息,提出异常感知方法;最后,利用历史滤波器具有不同置信度的特点以及目标在时域中的连续性,通过异常感知方法自适应选择高置信度的历史滤波器作为时间正则化的参考模板,降低了滤波器退化的风险。在OTB50、OTB100和TC128测试基准上进行仿真实验,该算法能够适应外观变化、画面杂乱等复杂条件下的跟踪任务,具有较强的鲁棒性和实用性。

全文