摘要

针对单样本目标检测样本量较少的问题,提出了一种基于跨域学习的方法。该方法从数据增强的角度出发,增加其他域的数据集作为辅助,增强网络学习能力,同时为解决不同域间存在差异的问题,提出了一种基于图片尺度和实例尺度的跨域学习算法,分别对输入的图片特征与检测网络的候选特征增加域分类器模型,用于增强网络对跨域数据的背景和目标的域适应能力。在两个不同的跨域场景进行实验,其中在PASCAL VOC数据集上与目前主流的单样本目标检测算法进行比较,超过目前最好算法2.8个百分点,从而证明了本文方法可以有效提高单样本目标的检测性能。