摘要

为解决小样本中文语音情感识别准确度低的问题,提出一种基于残差网络改进的中文语音情感识别网络结构AResnet。使用时域增强和频域增强生成更复杂的模拟样本扩充语音情感数据,将注意力机制引入至残差网络(residual networks)中,关注谱图中情感特征分布,提升情感识别率。在CASIA中文语音数据集上训练、测试,其结果显示,对比DCNN+LSTM、Trumpt-6网络结构,识别率分别提升约14.9%、3%,验证了AResnet在中文语音情感识别中的有效性。该方法也在英语语音数据集eNTERFACE’05上进行实验,识别准确率为92%,验证了AResnet有较好的泛化能力。