摘要
针对太阳能电池组件中电池片出现隐裂导致整片电池破碎,最终影响整个组件发电量的问题,在对电池组件光致发光(PL)图像待检测区域筛选定位的基础上,提出了一种利用卷积神经网络(CNN)进行电池组件隐裂缺陷检测的方法。首先利用PL成像方法获取电池组件图像,然后对图像进行预处理,基于聚类的方法对待检测目标区域进行筛选定位,最后利用3种不同结构的卷积神经网络模型对电池片进行缺陷检测,并进行准确率对比,使最优识别准确率达到99.25%。实验结果验证了该方法能准确地检测出太阳能电池组件的隐裂缺陷。
- 单位