摘要
为解决锂电池可用容量估算过程中精度与效率难以兼顾的问题,本文提出了一种基于特征处理与径向基神经网络的锂电池剩余容量估计方法。首先由电池充电过程数据中提取与剩余可用容量相关联的特征量,然后运用局部异常因子算法对特征量中异常点进行精准清洗,提高特征量所含有效信息量,再通过局部线性嵌入降维算法对所得特征向量组进行降维处理,减少数据复杂度,最后,引入径向基神经网络建立起剩余容量的估算模型。在不同型号电池上应用该模型进行了验证,估算结果的最大平均绝对误差为0.06,最大均方根误差为0.05,表明该模型能够有效估计锂电池的剩余可用容量并有较强的鲁棒性。与Elman神经网络和BP神经网络算法相比,在保证高精度的同时该方法有更快的估算效率。
- 单位